A Concentration-Controllable Microfluidic Droplet Mixer for Mercury Ion Detection

نویسندگان

  • Qian-Fang Meng
  • Lang Rao
  • Bo Cai
  • Su-Jian You
  • Shi-Shang Guo
  • Wei Liu
  • Xing-Zhong Zhao
چکیده

A microfluidic droplet mixer is developed for rapid detection of Hg(II) ions. Reagent concentration and droplets can be precisely controlled by adjusting the flow rates of different fluid phases. By selecting suitable flow rates of the oil phase, probe phase and sample phase, probe droplets and sample droplets can be matched and merged in pairs and subsequently well-mixed in the poly (dimethylsiloxane) (PDMS) channels. The fluorescence enhancement probe (Rhodamine B mixed with gold nanoparticles) encapsulated in droplets can react with Hg(II) ions. The Hg(II) ion concentration in the sample droplets is adjusted from about 0 to 1000 nM through fluid regulation to simulate possible various contaminative water samples. The intensity of the emission fluorescence is sensitive to Hg(II) ions (increases as the Hg(II) ion concentration increases). Through the analysis of the acquired fluorescence images, the concentration of Hg(II) ions can be precisely detected. With the advantages of less time, cost consumption and easier manipulations, this device would have a great potential in micro-scale sample assays and real-time chemical reaction studies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Study of Droplet Generation Process in a Microfluidic Flow Focusing

Microfluidic flow focusing devices have been utilized for droplet generation on account of its superior control over droplet size. Droplet based microfluidics addressed many scientific issues by providing a novel technological platform for applications such as biology, pharmaceutical industry, biomedical studies and drug delivery. This study numerically investigated the droplet generation proce...

متن کامل

Application of a Microfluidic Droplet Mixer for [18f] Fluorine Labeling of Biomolecules for Positron Emission Tomography

The most widely used method to label biomolecules with fluorine-18 is the formation of an amide bond between a lysine residue and 4-fluorobenzoate by reaction with N-succinimidyl 4-[F]fluorobenzoate ([F]SFB). The reaction of [F]SFB with the biomolecule is usually performed in macroscopic scale, whereas the reagents are only present in microscopic amounts. Thus, it could be beneficial to carry o...

متن کامل

Rapid droplet mixers for digital microfluidic systems.

The mixing of analytes and reagents for a biological or chemical lab-on-a-chip is an important, yet difficult, microfluidic operation. As volumes approach the sub-nanoliter regime, the mixing of liquids is hindered by laminar flow conditions. An electrowetting-based linear-array droplet mixer has previously been reported. However, fixed geometric parameters and the presence of flow reversibilit...

متن کامل

Visualizing millisecond chaotic mixing dynamics in microdroplets: A direct comparison of experiment and simulation.

In order to fully explore and utilize the advantages of droplet-based microfluidics, fast, sensitive, and quantitative measurements are indispensable for the diagnosis of biochemical reactions in microdroplets. Here, we report an optical detection technique using two-photon fluorescence lifetime imaging microscopy, with an aligning-summing and non-fitting division method, to depict two-dimensio...

متن کامل

Electrically Controllable Microparticle Synthesis and Digital Microfluidic Manipulation by Electric-Field-Induced Droplet Dispensing into Immiscible Fluids

The dispensing of tiny droplets is a basic and crucial process in a myriad of applications, such as DNA/protein microarray, cell cultures, chemical synthesis of microparticles, and digital microfluidics. This work systematically demonstrates droplet dispensing into immiscible fluids through electric charge concentration (ECC) method. It exhibits three main modes (i.e., attaching, uniform, and b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Micromachines

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015